Closing Plant Stomata Requires a Homolog of an Aluminum-Activated Malate Transporter
نویسندگان
چکیده
Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.
منابع مشابه
Aluminum-activated root malate and citrate exudation is independent of NIP1;2-facilitated root-cell-wall aluminum removal in Arabidopsis
In Arabidopsis, aluminum (Al) exclusion from the root is mainly facilitated by Al-activated root malate and citrate exudation through the ALMT1 malate transporter and the MATE citrate transporter, respectively. However, the nature of an internal Al tolerance mechanism remains largely unknown. In a recent study, we showed that NIP1;2 facilitates Al-malate transport from the root cell wall into t...
متن کاملOverexpression of AtALMT1 in the Arabidopsis thaliana ecotype Columbia results in enhanced Al-activated malate excretion and beneficial bacterium recruitment
AtALMT1 (Arabidopsis thaliana ALuminum activated Malate Transporter 1) encodes an Arabidopsis thaliana malate transporter that has a pleiotropic role in Arabidopsis stress tolerance. Malate released through AtALMT1 protects the root tip from Al rhizotoxicity, and recruits beneficial rhizobacteria that induce plant immunity. To examine whether the overexpression of AtALMT1 can improve these trai...
متن کاملCharacterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis.
Malate transporters play a critical role in aluminum (Al) tolerance responses for some plant species, such as Arabidopsis (Arabidopsis thaliana). Here, we further characterize AtALMT1, an Arabidopsis aluminum-activated malate transporter, to clarify its specific role in malate release and Al stress responses. Malate excretion from the roots of accession Columbia was sharply induced by Al, which...
متن کاملAtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis.
Aluminum (Al) tolerance in Arabidopsis is a genetically complex trait, yet it is mediated by a single physiological mechanism based on Al-activated root malate efflux. We investigated a possible molecular determinant for Al tolerance involving a homolog of the wheat Al-activated malate transporter, ALMT1. This gene, named AtALMT1 (At1g08430), was the best candidate from the 14-member AtALMT fam...
متن کاملTranscriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms
Aluminum (Al) rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 51 شماره
صفحات -
تاریخ انتشار 2010